Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight
نویسندگان
چکیده
Fruit flies make their living "on the fly" in search of attractive food odors. Flies balance the strength of self-induced bilateral visual motion and bilateral wind cues, but it is unknown whether they also use bilateral olfactory cues to track odors in flight. Tracking an odor gradient requires comparisons across spatially separated chemosensory organs and has been observed in several walking insects, including Drosophila. The olfactory antennae are separated by a fraction of a millimeter, and most sensory neurons project bilaterally and also symmetrically activate the first-order olfactory relay; both properties would seem to constrain the capacity for gradient tracking. Nevertheless, using a modified flight simulator that enables maneuvers in the yaw axis, we found that flies readily steer directly toward a laterally positioned odor plume. This capability is abolished by occluding sensory input to one antenna. Mechanosensory input from the Johnston's organ and olfactory input from the third antennal segment cooperate to direct small-angle yaw turns up the plume gradient. We additionally show that sensory signals from the left antenna contribute disproportionately more to odor tracking than signals from the right, providing further evidence of sensory lateralization in invertebrates.
منابع مشابه
Odor localization requires visual feedback during free flight in Drosophila melanogaster.
Adult fruit flies follow attractive odors associated with food and oviposition sites through widely varied visual landscapes. To examine the interaction between olfactory and visual cues during search behavior, we recorded three-dimensional flight trajectories as individuals explored controlled sensory landscapes. When presented with the source of an attractive odor invisibly embedded in the fl...
متن کاملCrossmodal Visual Input for Odor Tracking during Fly Flight
Flies generate robust and high-performance olfactory and visual behaviors. Adult fruit flies can distinguish small differences in odor concentration across antennae separated by less than 1 mm [1], and a single olfactory sensory neuron is sufficient for near-normal gradient tracking in larvae [2]. During flight a male housefly chasing a female executes a corrective turn within 40 ms after a cou...
متن کاملMetastasis: Alone or Together?
neck motor neurons. J. Neurosci. 29, 13097–13105. 8. Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P., and Egelhaaf, M. (2005). Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biol. 3, 1130–1138. 9. Krapp, H.G., and Hengstenberg, R. (1996). Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466. 1...
متن کاملFlies dynamically anti-track, rather than ballistically escape, aversive odor during flight.
Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizin...
متن کاملLaterality and symmetry in rat olfactory behavior and in physiology of olfactory input.
Many species use bilateral sampling for odor-guided navigation. Bilateral localization strategies typically involve balanced and lateralized sensory input and early neuronal processing. For example, if gradient direction is estimated by differential sampling, then any asymmetry could bias the perceived direction. Subsequent neuronal processing can compensate for this asymmetry but requires the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 19 شماره
صفحات -
تاریخ انتشار 2009